Iterative difference three-step method with $1+\sqrt 2$ convergence rate

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-step iterative methods with optimal eighth-order convergence

In this paper, based on Ostrowski’s method, a new family of eighth-order methods for solving nonlinear equations is derived. In terms of computational cost, each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which is optimal according to Kung and Traub’s conjecture. Numerical comparis...

متن کامل

An efficient three-step iterative method with sixth-order convergence for solving nonlinear equations

The aim of this paper is to construct an e¢ cient iterative method to solve nonlinear equations. This method is obtained from M. Javidi’s method (Appl. Math. Comput. 193 (2007) 360-365), which is third-order. The convergence order of new method is established to six and the e¢ ciency index is 1.5651. The Proposed method is compared with the second, third and sixth order methods. Some numerical ...

متن کامل

On the convergence of three-step random iterative procesess with errors of nonself asymptotically nonexpansive random mappings

begin{abstract} In this paper, we prove some strong and weak convergence of three step random iterative scheme with errors to common random fixed points of three asymptotically nonexpansive nonself random mappings in a real uniformly convex separable Banach space. end{abstract}

متن کامل

A note on three-step iterative method for nonlinear equations

In this short note we give certain comments and improvements of some three-step iterative methods recently considered by N.A. Mir and T. Zaman (Appl. Math. Comput. (2007) doi: 10.1016/j.amc.2007.03.071).

متن کامل

Three-Step Iterative Method for Solving Nonlinear Equations

In this paper, a published algorithm is investigated that proposes a three-step iterative method for solving nonlinear equations. This method is considered to be efficient with third order of convergence and an improvement to previous methods. This paper proves that the order of convergence of the previous scheme is two, and the efficiency index is less than the corresponding Newton’s method. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Matematychni Studii

سال: 2015

ISSN: 1027-4634

DOI: 10.15330/ms.43.2.220-224